Students from Kansas State University are learning about sustainability through biodiesel. This article from the school talks about the Biodiesel Initiative, which includes converting waste oil on campus into the green fuel and using it to power equipment and trucks, in particular a truck that picks up the waste oil. “We have a number of diesel trucks on campus that …
Loyola Students Get Hands-On Biodiesel Experience
Even in the pristine halls of academia, you can learn a lot by getting your hands dirty, especially when it comes to biodiesel. This article from Loyola University Chicago explains how the school’s Clean Energy Lab, the first and only school with an operation license to sell biodiesel in the U.S., is providing a student-run initiative that’s also a certified …
Report Sheds Light on Biodiesel RINs Behavior
What the federal government ends up doing about the proposed amount of biodiesel and ethanol to be blended into the nation’s fuel supply will have an effect on the valuable renewable identification numbers (RINs) used by blenders and fuel producers. This report from the University of Illinois is the latest in the series of articles from the school’s Ag and …
U of Wyoming Gets $4.25 Mil for Wind Research
The University of Wyoming receives $4.25 million for the federal government for wind energy research. This school news release says the three-year, Department of Energy-EPSCoR grant will fund wind farm modeling, transmission grid monitoring and the economics derived from wind-generated power. The grant will support 12 researchers from those five UW departments as well as researchers from Montana Tech. Researchers …
Kentucky Gets NSF, State Grants for Biomass
A total of $24 million in National Science Foundation (NSF) and state grants will fund research efforts on biomass in Kentucky. This story from WKU Public Radio at Western Kentucky University says the five-year, $20 million NSF grant will be in addition to $4 million from Kentucky’s Experimental Program to Stimulate Competitive Research. “The focus of this $24 million dollar …
Turning Biodiesel By-Product into Valued Chemicals
Researchers have discovered a catalyst of precious metals that is uncovering some real treasure in a biodiesel by-product. Rice University says engineers at the school have found palladium-gold nanoparticles, used as catalysts for cleaning polluted water, are also surprisingly good at turning glycerol into valuable chemicals. Through dozens of studies, [Michael] Wong’s team focused on using the tiny metallic specks …
Navy, Arizona State Work Together on Algae Biofuels
The U.S. Navy is working with Arizona State University to develop biofuels from algae. This article from the school says Dennis McGinn, U.S. Navy Assistant Secretary for Energy, Installations and Environment, visited the school’s Arizona Center for Algae Technology and Innovation (AzCATI) to discuss how the Navy and civilian industry have some key overlapping issues, such as cost, sustainability, efficiency …
Student Talks Biodiesel By-Product at Conference
The cutting edge of innovation was certainly on display at the recent National Biodiesel Conference & Expo in San Diego. Among the many innovations was a University of Kansas graduate student, who, with a little financial assistance from the folks at the Kansas Soybean Commission (KSC), talked about a new use for the biodiesel by-product, glycerin. Derek Pickett … was …
Texas Researchers Turning Yeast into Biodiesel
Everything might be bigger in Texas, but some scientists in the state are looking to tiny yeast cells to yield big feedstocks for biodiesel. This news release from the University of Texas at Austin says researchers at the Cockrell School of Engineering have developed genetically engineered yeast cells to produce the lipids to go into biodiesel production. Assistant professor Hal …
MIT Finds New Way to Get More Out of Solar
Researchers at the Massachusetts Institute of Technology (MIT) have found a new way to get more out of harvesting solar energy. This article from the school says they’re using the sun to heat a high-temperature material whose infrared radiation would then be collected by a conventional photovoltaic cell. In this case, adding the extra step improves performance, because it makes …