U of W Research Converts Poplar Trees to Biofuels

New research from the University of Washington is laying the foundation to use woody biomass from poplar trees into sustainably produced biofuels and biochemicals. A five-year $40 million dollar study funded by the U.S. Department of Agriculture (USDA) is in its last year and results will seed a wood-based cellulosic ethanol production facility.

Poplar materials, including bark, leaves and wood, are used to make cellulosic ethanol.Dennis Wise/University of Washington

Poplar materials, including bark, leaves and wood, are used to make cellulosic ethanol.Dennis Wise/University of Washington

ZeaChem, one of the industry partners in the study, is moving ahead with plans to build a commercial production facility in Boardman, Oregon, in 2016 that will produce cellulosic ethanol and biochemicals from poplar trees grown specially for those industries.

“We’ve established that poplar is a viable and sustainable feedstock for the production of fuels and bio-based chemicals,” said Rick Gustafson, a UW professor of bioresource science and engineering, who leads the project. “We’ve provided fundamental information that our industry partners can use to convince investors that production of fuels and chemicals from poplar feedstock is a great investment.”

The research team is known as the Advanced Hardwood Biofuels Northwest and they have set up five demonstration tree farms with different varieties of poplar. None of the trees is genetically engineered, but instead researchers bred them to thrive in different environments and to grow fast. The trees can gain up to 20 feet a year, allowing for a harvest every two or three years.

When a poplar tree is cut, its stump naturally sprouts new shoots and the next generation of trees grow out of the parent stumps. Each tree can go through about six cycles of this regrowth before new poplars must be planted, explained Gustafson. Continue reading

Biofuels Capacity to Grow to 61B Gallons by 2018

According to new research, global biofuels capacity will grow to 61 billion gallons per year (BGY0 by 2018. Ethanol and biodiesel will continue to dominate with 96 percent of the capacity in 2018, but novel fuels and novel feedstocks will be major drivers of capacity growth, according to Lux Research.

The study finds that novel fuels and novel feedstocks will grow at a rate of 27 percent and 16 percent compound annual growth rate (CAGR), respectively, through 2018. Ethanol and biodiesel will grow at a slower 2 percent rate but will reach capacities of 40 BGY and 19 BGY, respectively.

Biofuels growth from Lux research“While ethanol and biodiesel dominate global biofuel capacity today, limits on their growth mean that novel fuels like renewable diesel, biojet fuel and biocrude are crucial to the future of the industry,” said Victor Oh, Lux Research Associate and lead author of the report titled, “Biofuels Outlook 2018: Highlighting Emerging Producers and Next-generation Biofuels.”

“Producers also need to tap into novel feedstocks like waste oils, non-edible biomass, and municipal solid waste to push the industry beyond food-vs.-fuels competition,” he added.

Lux Research analysts studied growth of biofuels utilizing an alternative fuels database of over 1,800 production facilities globally. Among their findings:

  • Waste oils will dominate next-generation biofuels. With a 52% share, biodiesel made from novel feedstock, specifically waste oils, will lead novel fuels capacity in 2018. Cellulosic ethanol and renewable diesel follow with 19% and 18%, respectively.
  • Americas continue dominance. With a 64% share of global biofuels capacity, the Americas are a dominant force. The region, led by the U.S. and Brazil, also leads in utilization of global production capacity with 86%, much higher than the global average of 68% in 2014.
  • Eight countries are biggest emerging producers. China, Indonesia and Thailand in Asia; Colombia and Argentina in the Americas; and Portugal, Poland and France in Europe are the biggest emerging production centers for biofuels after the U.S. and Brazil.

Molecular Swiss Army Knife Improves Algae-Fuel

A molecular Swiss Army knife may hold the key to making blue-green algae biofuel and biochemical production more viable. A research team from Michigan State University (MSU) fabricated a synthetic protein that both improves the assembly of the carbon-fixing factory of cyanobacteria while providing proof of concept for a device that could potentially improve plant photosynthesis or be used to install new metabolic pathways in bacteria. Study results were published this month in The Plant Cell journal.

MSU scientists have built a molecular Swiss Army knife that makes biofuels and other green chemical production from algae more viable. Photo by G.L. Kohuth

MSU scientists have built a molecular Swiss Army knife that makes biofuels and other green chemical production from algae more viable. Photo by G.L. Kohuth

“The multifunctional protein we’ve built can be compared to a Swiss Army knife,” explained Raul Gonzalez-Esquer, MSU doctoral researcher and the paper’s lead author. “From known, existing parts, we’ve built a new protein that does several essential functions.”

For this research, Gonzalez-Esquer worked with Cheryl Kerfeld, the Hannah Distinguished Professor of Structural Bioengineering in MSU’s-DOE Plant Research Lab, and Tyler Shubitowski, MSU undergraduate student. Kerfield’s lab studies bacterial microcompartments, or BMCs. These are self-assembling cellular organs that perform myriad metabolic functions. In other words, they can be though of as molecular factories with many different pieces of machinery.

The research team modernized the factory by creating, in essence, a hybrid protein in cyanobacteria, organisms that have many potential uses for making green chemicals or biofuels. Basically the protein speeds up the process of taking CO2 out of the athmosphere and converting it to sugars.

“It’s comparable to making coffee. Rather than getting an oven to roast the coffee beans, a grinder to process them and a brewing machine, we’ve built a single coffeemaker where it all happens in one place,” Gonzalez-Esquer said. “The new tool takes raw material and produces the finished product with a smaller investment.”

However, this altered cyanobacterial species won’t be taking over any ponds near you just yet. While the improved organisms excel at photosynthesis in a lab setting, the researchers said they are still ill prepared to compete with other bacteria. Hopefully, this will change as the team continues to develop and refine the photosynthesis process in algae.

Tokyo Scientists Increase Algal Oil Production

Hiroyuki Ohta, a researcher at the Tokyo Institute of Technology, together with scientists based at institutions across Tokyo, Japan, have discovered a way of increasing the oil production in algae. The oils are used to create biofuels and biochemicals and researchers are looking for ways to increase the production of triacylglycerols in the Nannochloropsis algal strain NIES-2145.

Triacylglycerols, or TAGs, are a class of lipids which form the backbone to biofuels in algae. The molecules are comprised of glycerol attached to three fatty acid chains, and microalgae is known to produce more TAGs under nutrient stress conditions. When the algal strain Chlamydomonas reinhardtii is starved of phosphorus, TAGs accumulate rapidly following the overexpression of an enzyme known as CrDGTT4, which in turn is triggered by gene promoter SQD2.

03_chlamydomonas6-2_color1aOhta and his team conducted genetic analysis of NIES-2145 and uncovered a homolog of the SQD2 gene. This implied a common expression control system between algal species in response to nutrient stress. The researchers decided to place both CrDGTT4 from C. reinhardtii and its SQD2 promoter into NIES-2145 to find out if this combination could control levels of TAGs production. Their attempt was successful – the SQD2 promoter was able to drive CrDGTT4 expression in NIES-2145 under phosphorus starvation without disturbing the membrane structure of the microalgae, and the production of TAGs in NIES-2145 increased as a result. Notably, incorporation of oleic acid (a preferentially utilized substrate by CrDGTT4) into TAG molecules was enhanced.

The findings point to the possibility of manipulating the production of TAGs, and thereforebiofuel oil production, in multiple microalgal strains. Further research is needed in order to fully understand the processes behind lipid remodeling during phosphorus starvation in algae before these methods are trialled on a larger scale.

Boise State Wants to Run Baja 1000 on Biodiesel

gsr_racing1A Boise State University non-profit wants to run an off-road race in Mexico on biodiesel, which the group believes will give them an edge for the win. This article from KMVT-TV says Greenspeed Research is building a biodiesel trophy truck to compete in the Baja 1000, an off-road race that takes place on Mexico’s Baja California Peninsula in the third week of November.

“Right now, we’re preparing for our next vehicle, which is a biodiesel powered trophy truck. And we’re shooting for racing at the Baja 1000,” said Dave Schenker, co-founder of Greenspeed.

“A biodiesel powered trophy truck is pretty much the top tier of off-road racing that usually has a big gas guzzling V-8 powered engine in it. But we’re bringing a new fuel and a new engine technology to that event,” said Schenker.

What does going green mean, as far as performance is concerned?

“Performance is the same. The gas mileage is different. The regular trophy truck drivers brag about getting 2.5 to 3 miles per gallon. We should be getting 7 to 8, 9. So that means, when they’re pitting twice, and take 5, 10, 8 minutes to pit, we’ve driven by them. So, yes, biodiesel is a game changers in the off road world, for sure,” said Paul Robinson, an off-road racer who is set to drive Greenspeed’s truck in the Baja 1000.

Greenspeed officials say the biggest challenge in building their first biodiesel trophy truck is the price tag. If you’d like to support their efforts, check them out at greenspeedresearch.org.

A Toast to Making Ethanol from Grape Biomass

univofadelaideRaise your glass in a toast to some researchers from Down Under, as they have figured out how to make ethanol out of some of the leftovers from wine-making. University of Adelaide researchers in Australia showed they could make about 100 gallons of ethanol by fermenting a ton of grape marc – the leftover skins, stalks and seeds from wine-making.

Global wine production leaves an estimated 13 million tonnes of grape marc waste each year. Nationally it is estimated that several hundred thousand tonnes are generated annually and it is generally disposed of at a cost to the winery.

“This is a potentially economic use for what is largely a waste product,” says Associate Professor Rachel Burton, Program Leader with the Australian Research Council (ARC) Centre of Excellence in Plant Cell Walls in the School of Agriculture, Food and Wine.

PhD candidate Kendall Corbin analysed the composition of grape marc from two grape varieties, cabernet sauvignon and sauvignon blanc. She also investigated pre-treatment of the grape marc with acid and enzymes.

Ms Corbin found that the majority of the carbohydrates found in grape marc could be converted directly to ethanol through fermentation with a yield of up to 270 litres per tonne of grape marc.

What was leftover from this ethanol-making process is suitable as an animal feed or fertilizer.

U of North Dakota Gets Biomass Research Funding

My Approved PortraitsFederal funding to the tune of $250,000 is headed to the University of North Dakota for research to study biomass as a biofuel and solar energy absorption by nanoparticles. North Dakota Democratic Sen. Heidi Heitkamp welcomed the research dollars.

“North Dakota has a rich heritage of conservation and we must continue to develop and use our natural resources responsibly,” said Heitkamp. “That also means continuing to invest in new technologies and supporting North Dakota’s renewable energy potential including wind, solar, and advanced biofuels, and these federal funds will help UND continue such critical research.”

The funding is made available through the National Science Foundation to work with their International Research Experience for Students for Technologies to Mitigate Global Climate Change.

Michigan State IDs Water Usage by Biomass Crops

Researchers at Michigan State University have identified the amount of water used by some key biomass crops. This article from the school says the study, titled, “Comparative water use by maize, perennial crops, restored prairie and poplar trees in the U.S. Midwest,” recently published by Great Lakes Bioenergy Research Center (GLBRC), lead authored by Michigan State University professor Steve Hamilton, provides a new perspective on how planting different biomass crop species might impact terrestrial water balances.
There were six biofuel species in this study including corn, switchgrass, miscanthus, a five species grass mix, an 18 species restored prairie mix and hybrid poplar. Four years of data are reported, which include a drought year (2012) and three years of near normal rainfall.

The climate and soils of rain-fed systems in the upper Midwest may limit crop productivity based on water availability. Two key questions were answered with this study:

How much water does each crop use?
Which crops are most efficient in converting water to biomass?

Water use

Average [evapotranspiration] (ET) over the four-year period showed the perennial cropping systems were not much different from the annual crop of corn. Mean growing-season ET increased in the following order: miscanthus < poplar < corn < prairie < switchgrass < native grass (Table 1), although the range of values was only about 4.5 inches. Notice that miscanthus and poplar trees had the lowest ET during the drought year of 2012. Previously, it was expected that perennial crops would require significantly more water, which could have deleterious effects at the watershed scale. This data disputes that theory and shows that planting perennial crops in the landscape with our climate and soils would not have significant adverse impacts.

EPA’s Ethanol Rules Pollutes Air Equal to 1 Mil Cars

ERCThe government’s proposal to cut the amount of ethanol to be blended into the nation’s fuel supply would pollute the air equivalent to one million more vehicles on the road. The Energy Resources Center (ERC) at the University of Illinois at Chicago conducted the analysis on the U.S. Environmental Protection Agency’s proposed ethanol blending rules.

The findings come in the wake of proposed rules by the U.S. E.P.A. that call for a reduction of the volume of ethanol blended in gasoline as mandated by the Renewable Fuel Standard (RFS), a program of the Energy Policy Act of 2005 signed into law 10 years ago this month. If the rules are adopted as proposed, a total of 17.5 billion gallons of ethanol would be blended with gasoline by 2016, 3.75 billion fewer gallons than originally mandated by Congress.

“The RFS has been one of the most successful federal policies enacted in the United States because it achieved exactly what it was intended to do: spur research and investment, lower greenhouse gas emissions and reduce dependence on foreign oil. Our work has demonstrated that, over the last 10 years, steady reductions in greenhouse gas emissions have materialized as biofuels became a more efficient, high quality product,” said Dr. Steffen Mueller, principal economist at the Energy Resources Center.

The peer-reviewed analysis was conducted using the GREET Model (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) developed by Argonne National Laboratory which examines the full life cycle emissions impacts of energy sources. As part of the analysis, carbon emissions related to the planting, growing, harvesting, transportation and production of corn into ethanol were compared to that of oil recovery and production.

Under the EPA’s proposed rules, conventional starch ethanol would likely be reduced to 13.4 billion gallons from 15 billion gallons in 2015. In this scenario, the analysis found that 4,520,000 tonnes of additional CO2 emissions would be incurred in 2015.

Both the National Corn Growers Association and the Illinois Corn Growers Association expressed disappointment in the direction the EPA has taken.

“It is very curious that some vocal audiences known for touting job creation, a stronger domestic economy, and reduced air and water pollution were largely mute on this significant occasion,” said Chip Bowling, NCGA president and a farmer from Maryland. “It is pretty hard to miss the irony of this anniversary-related RFS assessment hitting while the Environmental Protection Agency is weakening the successful legislation.”

“We are disappointed that the same federal agency charged to protect human health and the environment is proposing a rule change that would directly lead to greater greenhouse gas emissions,” said Ken Hartman, president of the Illinois Corn Growers Association. “After 18 months of delay in proposing new rules, the EPA has chosen not only to shirk its legal obligation as set forth by Congress, but to lose sight of its own mission.”

The EPA is expected to release its final rule in November.

Scottish Scientists Identify Algae Best for Biofuels

stephenslocombe1Scientists in Scotland have identified which algae are the best for biofuels. This article from the Scottish Association for Marine Science (SAMS) says the researchers used a new technique to figure out which ocean-based strains had the highest oil content.

The screening revealed two marine strains, Nannochloropis oceanica and Chlorella vulgaris, which had a dry-weight oil content of more than 50 per cent. This makes them ideal sources of biofuel for vehicles and aircraft.

The results of the screening, part of the BioMara project, have been published in Nature’s online journal Scientific Reports and are likely to help bring forward research into algae as a source of biodiesel and other biofuels by a number of years.

SAMS scientists have demonstrated that Nannochloropsis, for example, is very efficient at converting nutrients, so it has the perfect combination of high levels of oil and high productivity.

The report’s lead author, Dr Stephen Slocombe, SAMS research associate in molecular biology, said: “In order to produce biofuels from micro-algae we will have to generate high yields, so we need to know which strains will produce the most oil.

“While there is a lot of work being done on micro-algae biotechnology – currently around 10,000 researchers across the world – no-one has identified a shortlist of the best performing strains and how their properties could be used.”

The research also identified algae varieties best for the health food industry.