Wave Energy Research Progressing

The U.S. Department of Energy (DOE) has announced the funding of up to $4 million for continued wave energy technological research and monitoring efforts. Northwest National Marine Renewable Energy Center (NNMREC) faculty will also share in another $3.25 million grant to iWave Energy Researchmprove “water power” technologies that convert the energy of waves, tides, rivers and ocean currents into electricity.

The project team is comprised of NNMREC with support from Oregon State University and University of Washington will be expanded to add the University of Alaska Fairbanks. The partnership will also enable researchers to learn more about the energy potential of large, flowing rivers.

“We’re extremely excited about the opportunity to add Alaska Fairbanks to our program,” said Belinda Batten, director of NNMREC and a professor in the OSU College of Engineering. “Alaska has an enormous energy resource, both in its coastal waves, tidal currents and powerful rivers. Partnering with Alaska Fairbanks will allow us to expand the scope of our energy research and tap into additional expertise, to more quickly move wave, tidal, and river energy closer to commercial use.”

The new funding will allow NNMREC to develop an improved system for real-time wave forecasting; create robotic devices to support operations and maintenance; design arrays that improve the performance of marine energy conversion devices; improve subsea power transmission systems; and standardize approaches for wildlife monitoring. Federal officials said the overall goal is to reduce the technical, economic and environmental barriers to deployment of new marine energy conversion devices.

“Oregon State University has been a world leader in developing wave energy technology and it’s great that the Department of Energy has recognized this fact in awarding this grant,” said Oregon Sen. Ron Wyden, who helped obtain the new federal support for these programs. Along with its university partners in Washington and Alaska, this funding will help ensure that the Northwest National Marine Renewable Energy Center remains an important national center for ocean energy development not just for the Northwest, but for the entire country.”

Significant progress has been made in how to process, permit and monitor wave energy technology as it emerges from the laboratory to ocean test sites, and ultimately to commercial use. Wave energy’s sustainable generating potential equates to about 10 percent of global energy needs.

Mobile County Public Schools Converts to Propane

The Mobile County Public Schools will be moving their students this fall with 30 propane autogas buses. The school district is supporting the community outreach campaign, “It Starts With Us” and their first step is the converted Blue Bird Propane Visions buses.

“The deployment of our propane autogas bus fleet is a perfect example of our school system’s initiative, It Starts With Us,” said Pat Mitchell, director of transportation for Mobile County Public Schools. “We are providing dependable and clean student transportation while saving taxpayers money so we can put it back in the classroom where it counts most.”

MCPSS Propane Autogas school busOfficials rolled out the new buses during the MCPSS Transportation Department on International Drive. “Propane is cheaper, cleaner and domestically produced,” said Alabama Lt. Gov. Kay Ivey, who took a test ride on one of the new propane buses. “This is an environmental initiative I can get behind.”

“We are pleased to be the very first school system in Alabama to enhance transportation through the use of propane buses,” said Superintendent Martha Peek. “We have taken this step because we understand the advantages are increased fuel efficiency, economic and environmental.”

Each bus will displace about 40,000 gallons of diesel and emit 150,000 fewer pounds of carbon dioxide over their lifetime and the fuel costs nearly 50 percent less than per gallon than diesel according to Todd Mouw with ROUSH Cleantech.

Before choosing to fuel with propane autogas, the school district’s transportation department performed a comprehensive evaluation. This process included safety research, cost savings analysis, site visits to school systems that operate buses with propane autogas, and phone interviews with transportation directors.

“The schoolchildren and taxpayers of Mobile benefit from this important decision,” said Dale Wendell, Blue Bird’s chief commercial officer. “The adoption of Blue Bird Propane Vision buses further emphasizes Mobile County Public Schools’ forward-thinking leadership and commitment to reduce fuel and maintenance costs, support a domestically produced fuel, and provide cleaner air for the students and the community.”

PERC Updates Brand, Logo

Propane logoThe Propane Education & Research Council (PERC) has updated its brand identity for propane: PROPANE Clean American Energy. In addition, they have revealed a new logo. According to PERC President and CEO Roy Willis, the logo highlights propane as an American-made alternative fuel at a time when U.S. propane production from natural gas liquids is at record levels. He also said the change puts a spotlight on recent investments by the propane industry in new technologies.

“We hope PROPANE Clean American Energy will increase consideration of propane as a clean, affordable, and American-made alternative to conventional fuels among fleets, commercial landscapers, contractors, producers, and homeowners,” said Willis. “Increasing domestic demand for propane in the U.S. will ultimately lead to cleaner air and increased use of our nation’s own energy resources, rather than relying on foreign oil.”

The new logo and tagline will be used in all PERC-produced materials and will be made available free of charge to propane providers and OEM partners. The new logo will also replace the previous mark used by thousands of propane retailers nationwide on signs, delivery vehicles, equipment, websites, and literature. In addition, the new logo will be featured in the organization’s new multimedia safety campaign to encourage agribusiness operators and residential propane heating customers to fill up in advance of the winter season.

Willis added, “America makes more than enough propane to meet U.S. demand. As PERC rolls out this important safety campaign and new branding identity, the propane industry is prepared to meet the needs of a changing energy economy.”

MIT Researchers Convert Lead to Solar Power

Researchers at MIT are recycling materials from discarded car batteries into long-lasting solar panels that provide emissions free power while keep lead out of landfills. The system was described in the journal Energy and Environmental Science and was co-authored by Angela M. Belcher and Paula T. Hammon along with graduate student Po-Yen Chen, and three others.

The system is based on a recent development in solar cells that makes use of a compound called perovskite — specifically, organolead halide perovskite — a technology that has rapidly progressed from initial experiments to a point where its efficiency is nearly competitive with that of other types of solar cells.

“It went from initial demonstrations to good efficiency in less than two years,” said Belcher, the W.M. Keck Professor of Energy at MIT. Already, perovskite-based photovoltaic cells have achieved power-conversion efficiency of more than 19 percent, which is close to that of many commercial silicon-based solar cells.

Initial descriptions of the perovskite technology identified its use of lead, whose production from raw ores can produce toxic residues, as a drawback. However by using recycled lead from old car batteries, the manufacturing process can instead be used to divert toxic material from landfills and reuse it in photovoltaic panels that could go on producing power for decades. In addition, because the perovskite photovoltaic material takes the form of a thin film just half a micrometer thick, the team’s analysis shows that the lead from a single car battery could produce enough solar panels to provide power for 30 households.

As an added advantage, the production of perovskite solar cells is a relatively simple and benign process. “It has the advantage of being a low-temperature process, and the number of steps is reduced” compared with the manufacture of conventional solar cells, Belcher explained.

Those factors will help to make it “easy to get to large scale cheaply,” added. Continue reading

Solar & Storage Microgrid Project Planned for Vermont

A new solar + storage microgrid project has been announced for Rutland, Vermont. The Stafford Hills project is being developed by Green Mountain Power in collaboration with Dynapower and GroSolar. The U.S. Department of Energy, Office of Electricity along with the Energy Storage Technology Advancement Partnership (ESTAP) funded the energy storage component project along with funds from the State of Vermont. In addition, the project is being managed by Clean Energy States Alliance and Sandia National Laboratories.

Solar + Storage System in Vermont“This project is a national model for the future of clean energy – combining solar with energy storage,” said Lewis Milford, president of Clean Energy Group, which manages the Clean Energy States Alliance. “Solar power and battery storage will provide clean reliable power to a school that serves as an emergency shelter, helping a community cope with loss of power in a future disaster. This new form of resilient power is what all communities need to protect themselves from power outages in severe weather events.”

According to Clean Energy Group, this project is unique in several ways:

  • It is one of the first exclusively solar-powered microgrids in the US, and the first to provide full back-up to an emergency shelter on the distribution network;
  • It is the first solar+storage microgrid to be developed on a brownfield site, contributing to brownfield redevelopment efforts in Rutland, VT;
  • It incorporates 7,722 solar panels, capable of generating 2.5 MW of electricity, helping GMP to reach its goal of making Rutland, VT the Solar Capital of New England, and helping Vermont to reach its renewable energy goals;
  • It incorporates 4 MW of battery storage, both lithium ion and lead acid, to integrate the solar generation into the local grid, and to provide resilient power in case of a grid outage;
  • It incorporates innovative multi-port inverters designed specifically for this project by Dynapower, a local Vermont firm;
  • It will provide resilient power to a Rutland school that serves as a public emergency shelter (additional critical facilities may be similarly supported by this microgrid in the future); and
  • It will provide clean, distributed generation and resilient power to an economically challenged, urban community that is targeted for revitalization, and that suffers frequent power outages due to storms.

Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability, U.S. Department of Energy, added, “This project provides resilient power during emergencies while benefitting the grid at other times. The technical innovations will reduce cost and make the project commercially viable. This is the perfect project! It has social value, technical innovation, and furthers renewable integration for the grid.”

Volkswagen Focuses on Ultra-Low-Carbon Mobility

Volkswagen of America, Inc. is continuing to roll out plans for its holistic approach to e-mobility. Beginning with the launch of the zero-tailpipe emissions 2015 e-Golf model later this year, Volkswagen will invest in carbon reduction projects to offset emissions created from e-Golf production, distribution and up to approximately 36,000 miles of driving. Volkswagen also named SunPower as the official solar energy partner power provider. Volkswagen believes they will be one of the first high-volume manufacturers to deliver a truly holistic approach to ultra-low-carbon mobility.

volkswagen-egolf-charging-620To help determine its carbon offset projects, Volkswagen has teamed with 3Degrees, a renewable energy and carbon offset services provider. By investing in carbon reduction programs, Volkswagen said they will offset the e-Golf’s greenhouse gas (GHG) emissions that result from its production, distribution and from the estimated emissions produced from keeping the vehicle charged through the initial 36,000 miles of the vehicle’s life. Volkswagen of America chose to include carbon reduction efforts in California and in Texas with projects geared towards forestry conservation and landfill gas capture.

“Volkswagen feels it is important to look beyond the benefits of driving a vehicle without tailpipe emissions and to take a holistic approach to e-mobility,” said Oliver Schmidt, general manager, Environment and Engineering Office, Volkswagen Group of America. “We now have the ability to offer offsets that approximate the emissions created from production, distribution and the initial 36,000 miles of use.”

Volkswagen-supported projects included the Garcia River Conservation-Based Forest Management Project, located in Mendocino County, Calif., to protects and preserves a 24,000-acre native redwood forest, increasing carbon sequestration and storage, while also helping to restore the natural wildlife habitat. The company is also supporting the Big River and Salmon Creek Forests, located in Mendocino County, California, and the McKinney Landfill project, based at a closed landfill in McKinney, Texas.

“Volkswagen is showing leadership by including carbon offsets standard with this e-Golf electric vehicle,” added Steve McDougal, President of 3Degrees. “As more people choose low and no emission cars, Volkswagen is making it possible – and easy – to think comprehensively about the greenhouse gas emissions profile of a vehicle.”

Audi Moves to Improve EV Owner Experience

A3-sportback-etron-exterior-08Audi of America has announced the launch of a new program: Audi energy. The program is designed to improve the electric vehicle ownership experience as well as reduce the carbon footprint that comes with vehicle production, distribution and driving. Ultimately, the program will produce a new plug in hybrid vehicle – the Audi A3 Sportback e-tron – estimated to be available in the U.S. in mid 2015.

The program has three elements associated with the A3 e-etron:

  • At-home Audi-designed Level 2 charging developed with Bosch Automotive Service Solutions;
  • Audi will purchase carbon offset certificates in California and Africa to offset GHG emissions; and
  • Sunpower will provide optional home solar power system for Audi owners including a new home energy storage solution to capture additional solar energy.

“The Audi A3 Sportback e-tron will offer drivers an eco-conscious vehicle ownership experience,” said Wayne Killen, General Manager, Product Strategy and Launch. “Audi energy takes this to the next level with solutions that allow for sustainable fuel driving and a lower carbon footprint. We believe this will be one of the most comprehensive offering in the industry today.”

SG Preston Announces Renewable Diesel Project

SG Preston (SGP) has announced the planned development of a 120 million gallon renewable diesel facility in Lawrence County, Ohio. The $400 million bioenergy facility will be the world’s largest producer of renewable diesel when finished in 2017 according to SGP.

SG Preston logoThe company said a key component of the facility’s development is the licensing of their advanced process technology that has been successfully proven at commercial scale at other locations. According to SGP, this advanced technology efficiently converts waste feedstock into renewable diesel – chemically identical to petroleum-based diesel- and can be used as a drop-in replacement in vehicles. In addition, SGP said this technology allows them to customize its biofuel offering by adjusting fuel characteristics to meet various operating environments (extreme cold or heat) of the end user without diluting energy content in the GHG reduced fuel blend.

“For SG Preston, this is an important milestone and part of a larger vision of partnering with leading, global refining technology partners and local communities to develop a portfolio of renewable diesel and renewable jet fuel refineries targeting 1.2 billion gallons per year, or 20% of the federal RFS2 biomass-based mandate for biofuels,” said R. Delbert LeTang, CEO of SG Preston. “We see a blue sky opportunity to deliver customized, renewable fuel to government, the petroleum industry and other private users throughout the United States and we look forward to partnering with the people of southern Ohio to build new industries and new economic opportunity.”

Other partners in the project include the Lawrence County Economic Development Council, which is investing 62 acres in land and other incentives. The Appalachian Partnership for Economic Growth and JobsOhio were also instrumental in securing the investment and technology to play a role in the future of southern Ohio.
Pre-engineering studies for the facility are expected to begin in September 2014, with commercial operations targeted for 2017.

Bill Dingus, executive director of Lawrence County Economic Development Council, added, “This project will be of significant economic importance to southern Ohio, bringing long-term employment and income to the region. We look forward to supporting the development of new energy technologies, and passing on the benefits of commerce and cleaner air to local residents.”

UIC Researchers Convert Waste Carbon to Fuel

University of Illinois at Chicago (UIC) scientists, under the lead of Amin Salehi-Khojin, UIC professor of mechanical and industrial engineering, have synthesized a catalyst that improves their system for converting waste carbon dioxide into syngas. The syngas is a percursor of gasoline and other energy-rich products and this recent achievement in the the research team’s process has brought the production of CO2 to energy closer to commercial viability. The study was published in the journal Nature Communications on July 30, 2014.

The research team developed a unique two-step catalytic process that uses molybdenum disulfide and an ionic liquid to “reduce,” or transfer electrons, to carbon dioxide in a chemical reaction. The new catalyst improves efficiency and lowers cost by replacing expensive metals like gold or silver in the reduction reaction.

UIC researcher Amin Salehi-KhojinMohammad Asadi, UIC graduate student and co-first author on the paper said the discovery is a big step toward industrialization. “With this catalyst, we can directly reduce carbon dioxide to syngas without the need for a secondary, expensive gasification process,” explained Asadi. In other chemical-reduction systems, he noted, the only reaction product is carbon monoxide. The new catalyst produces syngas, a mixture of carbon monoxide plus hydrogen.

Salehi-Khojin, principal investigator on the study continued the explanation by noting the high density of loosely bound, energetic d-electrons in molybdenum disulfide facilitates charge transfer, driving the reduction of the carbon dioxide. “This is a very generous material,” said Salehi-Khojin. “We are able to produce a very stable reaction that can go on for hours.”

The proportion of carbon monoxide to hydrogen in the syngas produced in the reaction can also be easily manipulated using the new catalyst, said Salehi-Khojin.

“Our whole purpose is to move from laboratory experiments to real-world applications,” he said. “This is a real breakthrough that can take a waste gas — carbon dioxide — and use inexpensive catalysts to produce another source of energy at large-scale, while making a healthier environment.”

New Jersey Home to First Energy Resilience Bank

New Jersey has created what they term the first of its kind in the U.S. “Energy Resilience Bank” (ERB) to focus on energy resilience. The bank was created in response to the impacts of SuperStorm Sandy where over 8 million people lost electric power in the region – many for several days. The ERB will provide $200 million for municipalities to finance clean resilient power solutions. Projects could include those that “would ensure a highly reliable power supply to critical public facilities such as water and wastewater treatment plants, hospitals, shelters, emergency response centers and transit networks in the event the larger electrical grid fails.”

New Jersey Disaster Recovery Action PlanOn July 23, 2014, the New Jersey Board of Public Utilities approved a sub-recipient agreement with the New Jersey Economic Development Authority to work jointly in the establishment and operation of the ERB. The ERB would be financed through use of $200 million of New Jersey’s second Community Development Block Grant-Disaster Recovery (CDBG-DR) allocation. According to the Governor Christie’s announcement, “the ERB will support the development of distributed energy resources at critical facilities throughout the state …to minimize the potential for future major power outages and increase energy resiliency.”

Clean Energy Group’s President, Lewis Milford, applauded the creation of the ERB. “New Jersey has created a model for all states to finance resilient power projects, to protect against power outages during severe weather events. The ERB is an important way for states to finance projects like solar with energy storage in food banks, fire stations, wastewater treatment plants, and schools. It deserves to be a national infrastructure finance model for states around the country.”

The Clean Energy Group is working with states and communities to help deploy more resilient power projects, and the organization cites financing as a remaining a key stumbling block. The New Jersey approach through the new ERB is a model that all states should consider as they deal with increasing problems of severe weather and the power system, problems that are only growing worse, according to Clean Energy Group.