NREL Discovers New Biorefinery Process

Joanna Schroeder

Researchers at the National Renewable Energy Laboratory (NREL) have developed a new biorefinery process that more efficiently converts algae to ethanol. The process, Combined Algal Processing (CAP), was featured in the journal Algal Research.

Algal ResearchThe research builds on a project previously completed by NREL In that work, the research looked at two promising algal strains Chlorella and Scenedesmus, to determine their applicability as biofuel and bioproduct producers. They concluded Scenedesmus performed better in this process with impressive demonstrated total fuel yields of 97 gallons gasoline equivalents (GGE) per ton of biomass.

The next step is to reduce the costs of conversion. The research team has looked at increasing the amount of lipids in algae but found the it won’t significantly reduce the costs. However, the NREL team has determined further progress could be made by more completely using all algal cellular components instead of just relying on the lipids. By applying certain processing techniques, microalgal biomass can produce carbohydrates and proteins in addition to lipids, and all of these can be converted into co-products.

According to NREL, the team has determined that through the use of a solid-liquid separation process, the carbohydrates can be converted to fermentable sugars, which can then be used to produce ethanol. However, as much as 37 percent of the sugars were lost during that process. Those trapped sugars “cannot be used for fermentation without a costly washing step, resulting in a loss of overall fuel yield,” according to the Algal Research report.

In their most recent work, says NREL, researchers hypothesized the amount of ethanol could be significantly increased by simplifying the processing. By skipping the solid-liquid separation process and exposing all algae components directly to fermentation conditions, both ethanol (from the carbohydrate fraction) and lipids can be recovered simultaneously. Using Scenedesmus and the CAP, and after upgrading the lipids to renewable fuels, scientists were now able to produce a total fuel yield estimated at 126 GGE per ton. That’s 88 percent of the theoretical maximum yield and 32 percent more than the yield from lipids alone.

The NREL researchers also were able to recover 82-87 percent of the lipids from the CAP, even after ethanol fermentation and distillation, indicating that the initial fermentation of sugars in the pretreated biomass slurry doesn’t significantly impede lipid recovery. These results led to the conclusion that the novel CAP process is capable of reducing the cost of algal biofuel production by nearly $10/GGE compared to a “lipids only” process, taking the modeled cost down to $9.91/GGE. While this is not nearly low enough to compete with petroleum, this approach can be combined with reduced costs for biomass production to provide a path forward to achieve that goal.

advance biofuels, algae, biomass, Ethanol, Research